Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vascul Pharmacol ; 145: 107024, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895494

ABSTRACT

BACKGROUND: COVID-19 pandemic severely affected national health systems, altering the modality and the type of care of patients with acute and chronic diseases. To minimize the risk of exposure to SARS-CoV2 for patients and health professionals, face-to-face visits were cancelled or postponed and the use of telemedicine was strongly encouraged. This reorganization involved especially patients with rare diseases needing periodic comprehensive assessment, such as pulmonary arterial hypertension (PAH). MAIN BODY: The paper reports a proposal of strategy adopted for patients followed at our PAH center in Rome, where patients management was diversified based on clinical risk according to the European Society of Cardiology/European Respiratory Society PH guidelines-derived score and the REVEAL 2.0 score. A close monitoring and support of these patients were made possible by policy changes reducing barriers to telehealth access and promoting the use of telemedicine. Synchronous/asynchronous modalities and remote monitoring were used to collect and transfer medical data in order to guide physicians in therapeutic-decision making. Conversely, the use of implantable monitors providing hemodynamic information and echocardiography-mobile devices wirelessly connecting was limited by the poor experience existing in this setting. Large surveys and clinical trials are welcome to test the potential benefit of the optimal balance between traditional PAH management and telemedicine opportunities. CONCLUSION: Italy was found unprepared to manage the dramatic effects caused by COVID-19 on healthcare systems. In this emergency situation telemedicine represented a promising tool especially in rare diseases as PAH, but was limited by its scattered availability and legal and ethical issues. Cohesive partnership of health care providers with regional public health officials is needed to prioritize PAH patients for telemedicine by dedicated tools.


Subject(s)
COVID-19 , Pulmonary Arterial Hypertension , Telemedicine , COVID-19/epidemiology , Humans , Pandemics/prevention & control , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/epidemiology , Pulmonary Arterial Hypertension/therapy , RNA, Viral , Rare Diseases/epidemiology , SARS-CoV-2
2.
Front Med (Lausanne) ; 9: 819134, 2022.
Article in English | MEDLINE | ID: covidwho-1775694

ABSTRACT

Background: This study aimed to describe an innovative and functional method to deal with the increased COVID-19 pandemic-related intensive care unit bed requirements. Methods: We described the emergency creation of an integrated system of internistic ward, step-down unit, and intensive care unit, physically located in reciprocal vicinity on the same floor. The run was carried out under the control of single intensive care staff, through sharing clinical protocols and informatics systems, and following single director supervision. The intention was to create a dynamic and flexible system, allowing for rapid and fluid patient admission/discharge, depending on the requirements due to the third Italian peak of the COVID-19 pandemic in March 2021. Results: This study involved 142 COVID-19 patients and 66 non-COVID-19 patients who were admitted; no critical patient was left unadmitted and no COVID-19 severe patients referring to our center had to be redirected to other hospitals due to bed saturation. This system allowed shorter hospital length-of-stay in general wards (5.9 ± 4 days) than in other internistic COVID-19 wards and overall mortality in line with those reported in literature despite the peak raging. Conclusion: This case report showed the feasibility and the efficiency of this dynamic model of hospital rearrangement to deal with COVID-19 pandemic peaks.

3.
Comput Methods Programs Biomed ; 202: 106003, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1081281

ABSTRACT

BACKGROUND AND OBJECTIVE: Simulation in cardiovascular medicine may help clinicians understand the important events occurring during mechanical ventilation and circulatory support. During the COVID-19 pandemic, a significant number of patients have required hospital admission to tertiary referral centres for concomitant mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Nevertheless, the management of ventilated patients on circulatory support can be quite challenging. Therefore, we sought to review the management of these patients based on the analysis of haemodynamic and energetic parameters using numerical simulations generated by a software package named CARDIOSIM©. METHODS: New modules of the systemic circulation and ECMO were implemented in CARDIOSIM© platform. This is a modular software simulator of the cardiovascular system used in research, clinical and e-learning environment. The new structure of the developed modules is based on the concept of lumped (0-D) numerical modelling. Different ECMO configurations have been connected to the cardiovascular network to reproduce Veno-Arterial (VA) and Veno-Venous (VV) ECMO assistance. The advantages and limitations of different ECMO cannulation strategies have been considered. We have used literature data to validate the effects of a combined ventilation and ECMO support strategy. RESULTS: The results have shown that our simulations reproduced the typical effects induced during mechanical ventilation and ECMO assistance. We focused our attention on ECMO with triple cannulation such as Veno-Ventricular-Arterial (VV-A) and Veno-Atrial-Arterial (VA-A) configurations to improve the hemodynamic and energetic conditions of a virtual patient. Simulations of VV-A and VA-A assistance with and without mechanical ventilation have generated specific effects on cardiac output, coupling of arterial and ventricular elastance for both ventricles, mean pulmonary pressure, external work and pressure volume area. CONCLUSION: The new modules of the systemic circulation and ECMO support allowed the study of the effects induced by concomitant mechanical ventilation and circulatory support. Based on our clinical experience during the COVID-19 pandemic, numerical simulations may help clinicians with data analysis and treatment optimisation of patients requiring both mechanical ventilation and circulatory support.


Subject(s)
Extracorporeal Membrane Oxygenation/methods , Hemodynamics , Respiration, Artificial , COVID-19 , Computer Simulation , Humans , Patient Care Management , SARS-CoV-2 , Software
4.
Non-conventional in English | WHO COVID | ID: covidwho-276808

ABSTRACT

Background and Objective : The intra-aortic balloon pump (IABP) is the most widely available device for short-term mechanical circulatory support, often used to wean off cardiopulmonary bypass or combined with extra-corporeal membrane oxygenation support or as a bridge to a left ventricular assist device. Although based on a relatively simple principle, its complex interaction with the cardiovascular system remains challenging and open to debate. The aim of this work was focused on the development of a new numerical model of IABP. Methods : The new module was implemented in CARDIOSIM©, which is a modular software simulator of the cardiovascular system used in research and e-learning environment. The IABP is inserted into the systemic bed divided in aortic, thoracic and two abdominal tracts modelled with resistances inertances and compliances. The effect induced by the balloon is reproduced in each tract of the aorta by the presence of compliances connected to PIABP generator and resistances. PIABP generator reproduces the balloon pressure with the option to change IABP timing.We have used literature data to validate the potential of this new numerical model. Results : The results have shown that our simulation reproduced the typical effects induced during IABP assistance. We have also simulated the effects induced by the device on the hemodynamic variables when the IABP ratio was set to 1:1, 1:2, 1:4 and 1:8. The outcome of these simulations is in accordance with literature data measured in the clinical environment. Conclusions : The new IABP module is easy to manage and can be used as a training tool in a clinical setting. Although based on literature data, the outcome of the simulations is encouraging. Additional work is ongoing with a view to further validate its features. The configuration of CARDIOSIM© presented in this work allows to simulate the effects induced by mechanical ventilatory assistance. This facility may have significant importance in the management of patients affected by COVID-19 when they require mechanical circulatory support devices.

SELECTION OF CITATIONS
SEARCH DETAIL